-
推进先进适用储氢材料产业化
《规划》提出,以纯电动汽车、插电式混合动力汽车(含增程式)和燃料电池汽车为“三条垂直线”,设计汽车技术全创新链;构建以动力电池和管理系统、驱动电机和电力电子以及“三横”互联智能技术为核心的关键零部件技术供应体系。 我们需要在电池技术上取得突破。开展正负电极材料、电解质、膜和膜电极等关键技术研究,加强高强度、轻重量、高安全、低成本、长使用寿命的能源电池和燃料电池系统短板技术研究,加快研发,以及固态能源电池技术的工业化。掌握氢能储运、加氢站、车载储氢等氢燃料电池汽车应用支撑技术。 《规划》提出,有序推进更多 +
-
LNG槽车泄漏处理措施(二)
液化天然气油轮的改装 (1) 液化天然气油轮的100米范围被设定为警告范围。立即派遣警告人员,防止液化天然气储罐周围的所有车辆和行人通行,并维护现场。组织与消除危险无关的人员疏散到安全地点(风向),并组织附近居民疏散到安全地方(风向)。禁止一切火源,即:明火、点燃的香烟、,电火花(使用非防爆通信设备)、物体撞击、发动机排气、架空输配电电缆电源等产生的火花和静电。 (2) 配合市公安局和消防部门对警戒区内的所有点火源进行控制,并进行现场监测。 (3) 使用消防喷水液化天然气罐车,同时提升液化天然气储更多 +
-
LNG槽车泄漏处理措施(一)
1.低温液化天然气罐车卸载时安全阀跳脱 (1) 立即关闭罐车压力水相阀,打开罐车管道气相阀,将罐车压力排入管网,打开中间排放阀,加速卸车。 (2) 在罐车安全阀排放并返回背压后,可以继续正常操作。 2.低温液化天然气罐车卸货时软管断裂 (1) 立即停止装卸,打开车辆后部的紧急排气阀,关闭车辆上的所有阀门开关,关闭管道入口阀。 (2) 迅速拆下充气和排气软管。 (3) 更换软管并继续装卸过程。 3.低温液化天然气船卸货过程中软管法兰泄漏 (1) 立即停止装卸,打开车辆后更多 +
-
氢能船舶时代渐行渐近:政策持续加码 全球研发提速
一方面,造船业的排放压力日益增加,这是一种巨大的二氧化碳排放。另一方面,氢能船舶的应用场景正在出现,氢燃料电池船舶的全球研发进程正在加快。 “氨和氢能可能成为未来无二氧化碳海洋能源的主流替代燃料。”江南造船(集团)有限公司有限公司科技委员会主任胡克毅对氢燃料作为船舶性能的应用前景持乐观态度。 目前,我国在氢燃料电池船舶领域正处于第一阶段探索阶段,已经有零星的示范项目,如中海集团2019年自主研发的2000吨自放电氢燃料电池船。以及大连海事大学新能源船舶动力技术研究院今年牵头的燃料电池狩猎“力虎”。在“二更多 +
-
氢能炼钢:技术、经验与前景
氢冶金:可以实现二氧化碳的“零排放”。传统的高炉铁生产通过焦炭燃烧提供还原反应所需的热量,并产生还原剂一氧化碳(CO),该还原剂还原铁矿石以生产铁,并产生大量的二氧化碳气体(CO2)。氢能钢铁制造使用氢气(H2)代替一氧化碳作为还原剂,其还原产物为水(H2O),没有二氧化碳排放,因此钢铁制造过程是绿色无污染的。 国外使用案例:应用较早,电解水法主要用于氢气处理,因此大多与上游电力公司合作控制用电成本。目前最成功的项目包括瑞典钢铁HYBRIT项目、萨尔茨吉特SALCOS项目和奥地利钢铁协会H2FUTURE项目。更多 +
-
氢储能优势明显,将会推动光伏、风电的大规模应用
目前,北部地区即将进入夏季,电力系统已做好迎接夏季高峰的准备。近年来,随着发电装机容量的不断增加,中国的电力总供大于求。然而,去年冬天,一些地方在多年后再次出现了关闭和限制业绩的现象。据专家称,造成这种看似矛盾的现象的原因之一是光伏和风能等可再生能源的快速发展,这是间歇性的,加剧了电网的波动。为了支持可再生能源的发展,有必要尽量减少这种波动。 同济大学教授于卓平表示,发电方面的光伏公司目前正试图通过储氢来优化电力供应。“电网希望有稳定的电力供应。现在用氢气作为中间载体。能上网的电接入电网,不能上网的电用于生产更多 +
-
推进现有机组制氢的原因
美国积极鼓励现有装置进行制氢示范,前提是高温气冷反应堆和超高温气冷堆尚未投入市场。主要有三个原因: 首先,现有的核电站迫切需要新的收入来源。受市场天然气价格长期低迷、可再生能源在政府支持下快速发展等因素影响,美国核电站的持续运营面临严重的经济挑战。自2013年以来,已有10台设备在其使用寿命内永久关闭,超过10台设备宣布将在未来几年退役。 其次,你们正在为未来核电站和可再生能源电站的和谐发展奠定技术基础。随着风能和太阳能等可再生能源的快速发展,在电网中与可再生能源的无缝集成是未来核能发展的重要挑战。核能更多 +
-
美国核能制氢研究概况
核能部和能源效率与可再生能源部正在积极推动对核能制氢技术的研究。 核能办公室着眼于长期目标,对两种制氢技术进行了研究,即热化学循环技术和高温电解技术。对应于气冷高温反应器(输出温度700至950℃)和气冷高温反应堆(输出温度950℃以上)。 热化学循环技术利用化学催化剂使水在750至1000℃或更高温度下发生一系列化学反应,最终分解成氢气和氧气。人们普遍认为,这项技术效率很高:热能到氢能的转化率可以达到60%甚至更高。然而,技术成熟度较低,未来仍需进行大量研究和开发。 高温电解技术首先将水转化为高更多 +
-
核能制氢 --- 有望成为未来制氢首选
氢能是未来最有希望大规模使用的清洁能源;核能代表高效、低耗、环保和清洁。核能制氢将两者结合起来大规模生产氢气,这是未来大量氢气供应的重要解决方案,并为可持续发展和氢经济开辟了新的道路。 目前,美国、日本、韩国、法国和其他国家正在研究核能制氢。中国200MW高温气冷堆商业示范电站建设已被列为国家重要科技项目,被认为最有可能突破核制氢反应堆类型。 核能制氢基础 核能是一种低碳、高效的一次能源,其铀资源可以循环利用。经过半个多世纪的发展,人们掌握了日益先进和成熟的核能技术,成为人类大规模工业制氢的最佳选更多 +
-
工业基础和规模化程度影响地区输氢方式
影响区域氢运输的主要因素是燃料电池汽车的工业基础和规模。 关于工业启动,将特别考虑当地的配套工业,例如氢液化工厂和管道的存在;关于燃料电池规模,所需的氢气量也将随着燃料电池车辆数量的增加而增加。如果燃料电池汽车的规模为1万或10万辆,那么每天所需的氢气量为30吨或300吨。此时,如果采用高压氢气运输方式,将导致运输车辆分配困难。需要及时增加液氢运输车辆数量,液氢运输具有一定的规模效应。氢气运输成本可接受;随着燃料电池汽车规模的不断扩大,氢传输线的规模效应发挥出来,这是一种更适合的氢传输类型。 因此,在目更多 +