-
惰性稀有气体在霓虹灯管内的作用
霓虹灯可分为两类:填充惰性气体的灯和填充氩汞气体并在管内壁涂有荧光粉的灯。放电过程中前者辐射原子的特征光谱;后者通过在放电过程中激发汞原子产生253.7 nm紫外光子辐射,这些紫外光子刺激荧光粉形成量子转换并发光。 仅使用填充惰性气体的灯型,惰性气体的主要功能如下: 1.参与原子的受激发射,例如充满氖的霓虹灯发射红色光谱; 2.有效维持放电过程,防止电子自由程过大,使自由电子在激发和电离过程发生之前自然消失; 3.控制电子迁移率,即控制放电管的电导率,以确定氖管中的电场强度,并使氖管的电压降;更多 +
-
氙气Xe-氪气-Kr-卤素气体--电光源照明混合气
电光源分类 光源可分为自然光源和人工光源。就人造光源而言,以电的形式发光的光源统称为电光源。根据电能转化为光能的不同形式,电光源可分为以下几类:气体放电光源、热辐射光源、固体光源和激光光源。前三种光源属于非相干光源,激光光源属于一种新型相干光源。光源研究是一门特殊的技术学科,包括光学、原子物理、电真空和色度学等多个学科。本工作主要针对气体放电光源和电光源用混合气体,其他类型的电光源仅作简要介绍。 1.1气体放电光源 气体放电光源是放置在气体中的两个电极之间以发光的光源。气体放电光源因其高输出光而得更多 +
-
氦气He冷机“当代冰蓄低温工程最佳冷源方式”
空调已经被人们广泛使用和深入使用。随着社会的发展和科学技术的进步,人们对能源消费提出了更高的要求。如何选择冰蓄冷空调和使用冰箱已成为当前科学研究的重要课题。使用绿色制冷剂,如氦气、冰箱、溴机和无氯电动制冷螺杆机,已从倡导迅速演变为紧迫性和必然性。 “氦气机”蓄冰低温区域冷却和低温送风空调的优点: 1.“氦气发动机”使用氦气作为制冷剂,这是一个不错的选择,因为氦气是一种纯天然无污染的绿色制冷剂,不会造成空气污染或温室效应。 2.氦机冷却广泛应用于深冷领更多 +
-
三氯氢硅还原法制取高纯硅的化学原理
SiHCl3的合成 第一步:由硅石制取粗硅 硅石(SiO2)和适量的焦炭混合,并在电炉内加热至1600~1800℃ 可制得纯度为95%~99%的粗硅。其反应式如下: SiO2+3C=SiC+2CO(g)↑ 2SiC+SiO2=3Si+2CO(g)↑ 总反应式: SiO2+2C=Si+2CO(g)↑ 生成的硅由电炉底部放出,浇铸成锭。用此法生产的粗硅经酸处理后,其纯度可达到99.9%。 第二步:SiHCl3的合成 SiHCl3是由干燥的氯化氢气体和粗硅粉在合成更多 +
-
硅烷热分解法制取高纯硅的化学原理
在高纯硅的制备方法中,热分解法SiH4具有广阔的应用前景。该方法的整个过程可分为三个部分:SiH4的合成、提纯和热分解。 (1) SiH4的合成 桂花镁热分解制备SiH4是工业上广泛使用的方法。硅化镁(Mg2Si)是由硅粉和镁粉在500~550℃的氢气(真空或氩气)中混合而成。反应式如下: 2Mg+Si=Mg2Si 然后硅化镁和固体氯化铵在液氨介质中反应生成SiH4。 Mg2Si+4NH4Cl=SiH4↑+2MgCl2+4NH3↑ 液氨不仅是介质,还更多 +
-
氮气常见的制备方法大全
氮是如何产生的?氮气的常用制备方法有液空分馏、低温分离、膜分离、变压吸附、变压吸收等。由于氮占大气的4/5,即超过大气的78%,我们几乎可以无限使用氮。 液体空气分馏 氮主要是通过从大气中分离或分解含氮化合物而产生的。 液化空气每年产生3300多万吨氮气,然后通过分馏产生氮气和大气中的其他气体。 低温分离 低温分离过程也称为低温蒸馏过程,其中利用空气中氮和氧的不同沸点来分离氧和氮。由于氮气的沸点(-196℃)低于氧气的沸点,液氮在液态空气蒸发过程中比液氧更容易变成气体,而氧气在空气液化过程中比更多 +
-
氧同位素-氧18的氧气的用途
氧元素的稳定同位素,符号岾O,缩写为18O。1929年,W.F.Giorgio和H.L.Johnston利用分子光谱学发现天然氧由氧16、氧17和氧18同位素组成。现代测量表明,空气中氧同位素的确切成分是氧16:氧17:氧18=2667:1:5.5。 1937年,H.C.Yuri和J.R.Hoffman通过水蒸馏获得富氧水(重氧水)。在现代,分离氧气18的主要方法仍然是水蒸馏法,通过水蒸馏法可以获得99.8%的H218O。一氧化碳或一氧化氮的低温蒸馏也可以从氧气18中分离出来。 由于发现了重氧同更多 +