-
除了焊接气体,焊接技术中还有哪些问题?
1.焊接速度 如表所示,不同的焊接气体对焊接速度有不同的影响。CO2的速度将更快,混合气体的速度将更慢。根据焊接材料和焊接效果,选择合理焊接速度的焊接气体至关重要。 2.焊接成本 焊接成本包括人工、焊丝、耗材、电力等。,工作是其中的一大部分。因此,在选择焊接气体时,除了焊接气体的价格外,还应考虑图中的其他成本(因为气体价格仅占成本的一小部分)。您可以参考液化空气的焊接解决方案。 3.焊接表面质量 不同比例的焊接气体对焊接表面有很大的影响。例如,根据美国焊接协会的实验,焊接保护气体的氧气含量越高更多 +
-
在焊接技术中,如何选择焊接保护气?
焊接保护气可以分为单元、二元和三元混合气。根据所要焊接的材料、想要达成的焊接效果和保护气的特性,选择对应的气体。 单元素气体一般为氩气,主要用于TIG焊接,也适用于铝合金薄MIG焊接。 Ar+He混合物主要用于MIG焊接。根据焊接材料的厚度改变混合物的比例。材料越厚,He浓度越高。主要用于焊接铝合金。 在MAG焊接中,顾名思义,活性气体用作保护气体。通常使用Ar+CO2。在此基础上,在不同的焊接材料之后还添加O2或He。 N2/H2可以保护奥氏体不锈钢管的根部。 但是,即使选择了合适的保护气体更多 +
-
如何使用液氮杜瓦桶?
杜瓦桶的连接 在连接杜瓦桶之前,必须确认是使用气体还是液体,然后清楚地看到杜瓦桶接口下方的显示器是一个小铁板,即液相、气相或排放口。确认接口后,连接适配器。适配器和杜瓦瓶连接侧的螺纹为3/8NPT,因为杜瓦瓶开关阀的出口螺纹均为3/8NST内螺纹(注:NPT为锥形螺纹,如果锥形螺纹密封,则必须添加生带)。 连接适配器和气体消耗点的螺纹有不同的形状,如M18、M20、G5/8等。建议对不同的介质(如液氮、液氧和液氩)使用不同的螺纹,以防止连接不正确。连接适配器后,连接金属软管。连接好软管后,您可以打开更多 +
-
了解氢能源具备哪些优点
氢能有许多优点: 1.燃烧性能好:点火快,与空气混合时可燃范围广,燃点高,燃烧速度快; 2.它是储量丰富的新能源的一部分,不依赖化石燃料; 3.高热值:除核燃料外,氢在所有化石燃料、化学燃料和生物燃料中的热值最高; 4.低能耗:长距离高压输送可以中断,氢输送可以用长距离和短距离管道代替。安全性相对提高,低效能量损失减少; 5、无毒、无有害物质; 6.各种形式:气体、液体或固体金属氢化物,可满足不同的储存、运输和不同的应用环境要求; 7.利用率高:氢气消除了内燃机噪声源和能源污染隐患,利更多 +
-
工业氧气和医用氧气有什么区别
氧气分为工业氧气和医用氧气。差异: 1.氧气的浓度和质量不同。 工业氧气中含有许多杂质,工厂检验中没有对其进行要求。特殊气体网络和氧气浓度99%以上合格。因此,吸入影响人们的健康。医用氧气纯度高,氧含量浓度不低于99.5%,无色无味。医用氧气必须检测杂质,一旦杂质超标,就不能输送。 2.适用范围不同。 医用氧气是临床医用氧气,俗称干氧,主要用于预防和治疗缺氧患者;工业氧气实际上是用于工业生产和产品加工的氧气。 3.湿度控制不同。 医用氧气需要很低的含水量,因为水会导致铁氧化,当吸入人体时会造更多 +
-
乙烷气体的毒性及使用安全
乙烷是易燃易爆气体。其自然温度、燃烧热和空气中的爆炸极限。乙烷的爆炸浓度相对较低,因此无论生产现场、储存、运输和使用环境如何,都应按照相关规范配置防火防爆设备。所有装满乙烷的容器必须按照相关规定进行称重和填充。严禁过度拥挤。所有燃料气瓶的阀门接口应不同于惰性气体的阀门接口,应为带反螺纹(逆时针)的螺纹接口。 处理可浸泡在低温泄漏乙烷液体中的多孔材料(如珍珠岩粘合剂、隔热泡沫等)时应特别小心。必须将其加热至常温,并且在起火之前,必须用惰性气体替换多孔材料中吸收的可燃气体。 直接接触液态乙烷会导致冻更多 +
-
氙气Xe-氪气-Kr-卤素气体--电光源照明混合气
电光源分类 光源可分为自然光源和人工光源。就人造光源而言,以电的形式发光的光源统称为电光源。根据电能转化为光能的不同形式,电光源可分为以下几类:气体放电光源、热辐射光源、固体光源和激光光源。前三种光源属于非相干光源,激光光源属于一种新型相干光源。光源研究是一门特殊的技术学科,包括光学、原子物理、电真空和色度学等多个学科。本工作主要针对气体放电光源和电光源用混合气体,其他类型的电光源仅作简要介绍。 1.1气体放电光源 气体放电光源是放置在气体中的两个电极之间以发光的光源。气体放电光源因其高输出光而得更多 +
-
氮气常见的制备方法大全
氮是如何产生的?氮气的常用制备方法有液空分馏、低温分离、膜分离、变压吸附、变压吸收等。由于氮占大气的4/5,即超过大气的78%,我们几乎可以无限使用氮。 液体空气分馏 氮主要是通过从大气中分离或分解含氮化合物而产生的。 液化空气每年产生3300多万吨氮气,然后通过分馏产生氮气和大气中的其他气体。 低温分离 低温分离过程也称为低温蒸馏过程,其中利用空气中氮和氧的不同沸点来分离氧和氮。由于氮气的沸点(-196℃)低于氧气的沸点,液氮在液态空气蒸发过程中比液氧更容易变成气体,而氧气在空气液化过程中比更多 +